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We introduce the Regge-Froissart continuations of various partial-wave amplitudes for irN scattering 
into the complex / plane. The notion of J parity is clarified by considering parity nonconservation. The 
analyticity and symmetry properties of the Regge-Froissart continuation in the energy plane are also 
studied and the results of analysis applied to backward pion-proton scattering. A similar discussion is given 
of the x+ir —> N-\-N channel and the forward elastic pion-proton scattering. 

I. INTRODUCTION 

THE importance of regarding the scattering ampli­
tudes as a simultaneous analytic function of 

energy and angular momentum / was first pointed out 
by Regge for nonrelativistic potential scattering.1 This 
notion has been extended to the relativistic 5 matrix 
and has already revolutionized present thinking in 
strong-interaction physics.2 Here, we present a sys­
tematic discussion of the pion-nucleon problem from 
that point of view. 

In Sec. II, we introduce the proper Regge-Froissart 
continuations of various partial-wave amplitudes into 
the complex / plane for wN scattering, where we assume 
parity nonconservation. This is done to elucidate the 
nature of the / parity and to bring out clearly that / 
parity has nothing to do with space parity. As a by­
product of this discussion we clarify the concept of the 
range of exchange potential for the scattering of two 
unequal-mass particles—this is discussed in the Ap­
pendix. These /-plane continuations are studied in 
Sec. I l l as to their analytic behavior in the energy 
variable and new amplitudes free from kinematical 
singularities are introduced. Also, these amplitudes have 
important symmetry properties, which reflect in the 
expressions given in Sec. IV for the backward pion-
proton scattering in the direct channel. The observed 
particle and resonance states in the wN channel are 
also discussed in Sec. III. The last two sections, V and 
VI, deal, respectively, with the /-plane analyticity of 
helicity amplitudes in the 7r+7r —> N+N channel and 
with its implications for the forward elastic pion-proton 
scattering. 

II. REGGE-FROISSART CONTINUATION OF PARTIAL-
WAVE AMPLITUDES IN THE nN SCATTERING 

CHANNEL: /PARITY 

We introduce the proper analytic continuations into 
the complex / plane of the various partial-wave ampli-
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tudes for wN scattering. Even though parity is con­
served, the discussion is carried out for the general 
parity-nonconserving case because confusion has pre­
vailed whether / parity and ordinary parity (i.e., space 
parity) are distinct quantum numbers for Regge 
trajectories. The / parity is the notion that only the 
alternate physical / values on the Regge trajectories 
give rise to physical bound states and resonances. This 
certainly is true for spin-zero-spin-zero particle scat­
tering. Unfortunately, the separation of the amplitude 
into even and odd /-parity parts for this case coincides 
with the separation into even and odd space-parity 
parts. So one is likely to regard the /-parity notion as 
nothing distinct from the space-parity diagonalization, 
and this is the source of confusion. The only way to 
resolve this situation is to study a problem in which 
parity is not conserved and then see whether one still 
has the notion of / parity. As parity conservation is 
implied by angular-momentum conservation for scat­
tering of two spin-zero particles, one has to study a 
problem with spin. In the following we study scattering 
of a spin-zero particle by a spin-one-half particle; i.e., 
we study wN scattering where we assume parity 
nonconservation. 

There are now four independent invariant ampli­
tudes, instead of the usual two amplitudes A and B. 
The T matrix can be expressed as 

where 
T=-A+iy>QB+iyn>QC-yJ), 

Q=J(* i+*») , 

(2.1) 

and Ki and K2 are the four-momenta of the initial and 
the final pion, respectively. 

The differential cross section da/dti can be written as 

where 

— = Z |<final|/| initial) |2, (2.2) 
dQ spins 

f=fi+*'kf<r'kif2+<r'kffi+<r'kif4, (2.3) 

and kf and ki are unit vectors in the direction of the 
final and the initial pion three-momentum, respectively. 

stam, Phys. Rev. 126, 1202 (1962); S. C. Frautschi, M. Gell-
Mann, and F. Zachariasen, ibid. 126, 2204 (1962); R. Blancken-
becler and M. L. Goldberger, ibid. 126, 766 (1962); B. M. 
Udgaonkar, Phys. Rev. Letters 8, 142 (1962). 
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The fiS are given by 

f1=[(E+fn)/8wWXA+(W-m)B~]y 

f2=l(E-fn)/8TrWT-A+(W+?n)B'], 

fi=-(k/%TcW)iWC+D-], 
and 

/ 4 = - (k/SirW^WC-Dl, (2.4) 

with k, E, and W being the magnitude of the three-
momentum of the pion, the energy of the nucleon, and 
the total energy, respectively, in the center-of-mass 
system: i.e., 

E=(W2+fn2-l)/2W, 
and 

U2=W2- (2m2+2)+ (m2- \)2/W2. 

We might note that time-reversal invariance implies 
that D=0 ; i.e., that fz=f4. However, we do not need 
to assume time-reversal invariance. 

The partial-wave decompositions of the / / s are 
given by 

/ i = E aj-hJ-\JpJ+h-H aj+\,J+hJpJ-U 

and 
/ 4 = L aj^j+SPj^-Z aj^j-SPj^', (2.5) 

where a>L",L'J is the partial-wave amplitude for transi­
tion between an initial and a final state, both with 
total angular momentum / , and having orbital angular 
momenta V and L", respectively. In the conventional 
notation a /_$ , /_ /=/ /_£ ,+ and aJ+$,j+$J=fj+$,_. The 
summation over / runs over / = 1/2, 3/2, 5/2, • • •. The 
argument of the Legendre polynomials is 

z=co^=l+(t/2k2)=l+(2m2+2--s--u)/(2k2), (2.6) 

where s, u, and t are the usual invariant variables, which 
have the significance of becoming the total energy 
squared in the barycentric systems of the wN scattering 
channel, the crossed wN scattering channel, and the 
7r+7r —» N+N channel, respectively. 

The projection formulas for the different partial-
wave amplitudes can be worked out and are given by 

1 r+l 

aJThJTi
J=- d(cosS)lfiP^+f2Pj±Q, 

2J-i 
and 

1 r+1 

*j±hjW—\ d(cosd)U^JT&fiPj±a (2.7) 
2 j_ i 

Using these projection formulas (2.7), and the ex­
pressions (2.4) for fi's in terms of the invariant ampli­
tudes, we get, finally, 

E+m 
ZAj^+iW-nOBj^Q ajThJ^/^ 

16TW 

E—m 
+ L-AJ±i+ (W+m)BJ±a 

16TTW 

and 

aj±h,JThJ= — 
16wW 

LW(cJTh+cJ±h) 

where 
+ (Dj^-DJ±hn (2.8) 

•£ d(cosB)A (s,u,t)P j (cosd). (2.9) 

The Bjy Cj, and Dj are defined similarly. 
Expressions (2.8) and (2.9) define the various partial-

wave amplitudes for physical values of / . One has now 
to find an analytic continuation of these amplitudes 
into the complex / plane, from these physical / values, 
that is suitable for a Sommerfeld-Watson transform. 
As the only / dependence of partial-wave amplitudes 
is contained in AJy BJy Cj, and Dj, the problem re­
duces to finding a proper continuation of these quan­
tities. To that purpose, we notice that invariant 
amplitudes satisfy fixed energy-dispersion relations of 
the type 

1 r™At(s/)dtf 1 /•" Au(s,uf)duf 

A(s,u,t)=- + - / (2.10) 
7JV 4 / ' —/ W ( m + 1 ) 2 U' — U 

1 f00 

WJ 4 X' 

At(s,xf)dx' 

+2£2(l-cos0) 

Au{syx
,-\-{m2-\)2/s)dxr 1 ^ 

If J (m4-l)2-(ma-l)V« *'+2&2(l + COS0) 
(2.11) 

By substituting expression (2.11) for A in (2.9), 
we get 

i/-j= 
irtt 
-Jdx'lAt(s,x') 

+ (-y-Uuis, x'+ (m2- 1)2A)] 

XQjJl+—\ 
\ 2k2/ 

(2.12) 

We see that except for the (—) / _ i factor, Eq. (2.12) 
provides an expression suitable for Sommerfeld-Watson 
transform. The canonical way to get rid of the (~) / ~ i 

factor is to define two analytic continuations of Aj-$, 
one away from even integral values of / — § , and another 
from odd integral values3 of / — $ ; i.e., 

Aj-^=— / [Atis^+Auis, x'+ (m2- \)2/s)1dx' 

XQjJl+—\ 
\ 2*V (2.13) 

3 E . J. Squires, Nuovo Cimento 25, 242 (1962). Also there is a 
good discussion of / parity or signature in the paper of S. C. 
Frautschi, M. Gell-Mann and F. Zachariasen, Phys. Rev. 126, 
2204(1962). 



REGGE POLES IN TN S C A T T E R I N G 1891 

and 

4j_i* = — [lAtM-Auis, x?+{m*-X)ys)¥x' 
wk2J 

XQJ-A 1+ 

If one uses Ajr\e for Aj^i in Eq. (2.8), together 
with Bj^ie for Bj^h Cj^e for Cj^h and D ^ ' for 
Dj^h o n e obtains a continuation of the different partial-
wave amplitudes that agrees with the amplitude for 
these physical values of / = 1/2, 5/2, 9/2, • • • etc. Simi­
larly, by using Ar?\* for A j ^ \ in Eq. (2.8), and replace­
ments S/Ti* for Bj^h CJTJ* for CJTI, and Dj^ for 
An:*, one would obtain another continuation which 
agrees with the amplitude for these physical values of 
7=3/2, 7/2, 11/2, • • •. This is precisely the notion of J 
parity, which here follows irrespective of any parity-
conservation considerations, and only arising because of 
the simultaneous presence of the direct and exchange 
forces. It is a straightforward matter to express the 
Sommerfeld-Watson transform of the scattering ampli­
tudes in terms of these even and odd /-parity con­
tinuations of the various partial-wave amplitudes. For 
example, 

/ . 
dJ 

-oj-i.jj^pjiA'(-z)±p,iA'm 
C COST J 

i r dJ 
± _ aj-h,j^>*lPj±h

f(-z)-FPJ±h>{z)-] 
4 J c coswJ 

i r dJ 

iJc 
- ^ + i . « / ' , [ i , W ! , ( - 2 ) = F P j T i , ( z ) ] 

i r dJ 
=F- j a/+1. j+ i

/ ,*[W(-«)± W ( * ) ] . 
4yccosir/ 

(2.14) 
where on the right-hand side of Eq. (2.14) the upper 
signs refer to / i , the lower signs to /2, and C is the usual 
undistorted contour for the Sommerfeld-Watson trans­
form. Of course, the contour C can be distorted in that 
entire region of the / plane over which the various con­
tinuations exist if the contribution of the enclosed 
singularities, in particular Regge poles, is included. 

in . REGGE TRAJECTORIES IN THE *N 
SCATTERING CHANNEL 

We now study the analyticity and symmetry prop­
erties in the energy variable of the continuation of the 
partial-wave amplitudes into the complex / plane, 
which we introduced in Sec. II. We also discuss the 
observed particle and resonance states in this channel 
in terms of the present analysis. 

If we consider the different partial-wave amplitudes 
continued into the complex / plane as functions of the 
invariant variable s=W2, we encounter, apart from the 

s-plane singularities of Aj^x6'*, etc., kinematical singu­
larities of the \/s type caused by the factors of W—tn, 
W+m, and W, etc., which occur in the problem because 
of the spin. The existence of kinematical singularities 
in the 5 plane was already brought out for partial-wave 
amplitudes corresponding to the physical / values, by 
earlier authors.4 Thus it is advantageous to work in 
the JF-complex plane. 

The functions AJT^'4*, etc., have additional branch 
points whose locations are given by k2=0, when / T j 
is not a positive integer, apart from the usual branch 
points, which are those of AJT\ for physical values of / . 
However, the function Aj^xe>*/(2k2)jT$ has precisely 
the same analytic structure as the function AJT\/ 
(2k2) JT*> for physical values of / . 

We are thus led to consider the following quantities, 
if we wish to avoid any kinematical singularities: 

*JT* . JTI / C # ' * ) (»0 = 
16TW aJThjTh

J^ 

E±m (2k2) J-h 
(3.1) 

Aj^>*> Bj_h 
(e,4>) 

+2(E^m)A =F-
ij+i 

(2k2)J-* (2k2)J~± 

(PF±m)_____J ) (3.2) 

hj±hJn
J^)(W) = 

and 

hj±h,jThJM)(W) = 

(2k2)J+$ (2k2)J+\ 

16irWaJ±hJTh
J^ 

k (2k2)J~* 
m 

(2k2) J-\ ~(2k2) J-h 

Cj+h^ (2k2)DJ+h^ 
+2Wk2 =F . (3.4) 

(2k2)J+* (2k2)J+* 

It is easy to see from expressions (3.1) through (3.4) 
that these eight partial-wave amplitudes h defined for 
complex / have no kinematical singularities in the W 
plane, and their singularity structure in the W plane 
is precisely the same as that of the functions hi+ (W) 
= [W/ (E+rn)']fn- introduced and discussed by Frazer 
and Fulco.4 

Besides having nice analytic structure in the W 
plane, these new amplitudes also have some very simple 
symmetry properties in the W plane.6 We have 

and 
hj-h j-h

J^(W) = -hJ+hJ+h
J^(-W), (3.5) 

A/+l.j-l/(#i*)(W0 = - * / - i . / + / ( ^ ) ( - W 0 . (3.6) 
4 S . Frautschi and D. Walecka, Phys. Rev. 120, 1486 (I960): 

W. Frazer and J. Fulco, ibid. 119, 142. 
6 The author is indebted to Dr. N. Dombey for a discussion 

about applying the Regge method to nucleons, as an after effect 
of which the present author was led to realize the importance of 
the symmetry relation (3.5). However, the present way of apply­
ing the Regge method to fermions is different from Dr. Dombey's 
method. The author is also thankful to Professor M. Gell-Mann 
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The analog of symmetry relation (3.5) for aj-\,j-.\{W) 
was first pointed out by MacDowell for physical J 
values.6 Here it is seen to hold true for complex J 
values also. The other symmetry relation is new. These 
relations essentially follow from the reflection properties 
of the fi(W)'s given by 

and 
/i(W0=-/*(-w0, (3.7) 

(3.8) 

The reflection properties (3.7) and (3.8) follow from the 
invariant nature under W—> — W transformation of 
the amplitudes A, B, C, and D. 

The symmetry properties (3.5) and (3.6) are very 
significant. We know from them that if ^/+ | , /+§ / ( e^ ) (W) 
has a singularity in the J plane, given by J=a(W), then 
hj-.$,j-$Jie'(f,)(W) would have a corresponding singu­
larity in the J plane at J=a(—W). In particular this 
singularity may be a Regge pole, J=a(W). The sym­
metry relation also implies the relations between the 
residue of the Regge pole J=a(W) in ^/+§,/+§/<6*0)(WO 
and the residue of the Regge pole /=a (— W) in 
hj-hJ-h

J^(W). 
In the case of parity nonconservation, which we are 

considering, all the four partial-wave amplitudes having 
the same J parity and corresponding to the same J are 
coupled to one another, and thus would share the same 
Regge poles in the J plane. This sharing property com­
bined with the above symmetry property implies that 
if one of the amplitudes has a pole at J=a(W), then it 
would also have a pole at J~a{—W), and the other 
three amplitudes likewise would have poles at J=a(W) 
and/=<*(-• W). 

For the real physical case of the conserved parity, 
we have 

Further, unitarity no longer couples the even and odd 
spdce-parity parts. Unitarity condition in the physical 
elastic region reads, for real J and real W, 

Im*<n=j. jT /w = 7 r z z l*^Fi.JTi / (# ) |2 , 

and 
16TW 

k(E±tn)(2k*y-l 
ImhjT^M- l ^ w r / ^ l 1 ; 

16TTW 

i.e., the four amplitudes A,n=i„rFiJ'(6,*) are all decoupled, 
and, in general, would have different /-plane singu­
larities, apart from the correlation implied by the 
symmetry relation (3.5) and discussed before. 

A family of Regge trajectories can thus be specified 
if we give the J parity and space parity. So far we did 

for pointing out that Gribov and Pomeranchuk have also reached 
similar conclusions. The present discussion makes it clear that the 
occurrence of two correlated Regge trajectories persists, even when 
parity is not conserved. 

6 S. W. MacDowell, Phys. Rev. 116, 774 (I960). 

not consider isospin. The inclusion of isospin gives one 
more quantum number, 7= 1/2, 3/2. 

If we regard the observed particle and resonance 
states with baryon number one as Regge poles in the 
TTN scattering channel, then they can be interpreted 
as follows: 

(1) Nucleon, isospin one-half, and F$ wN resonance 
with 7= 1/2 at 1680 MeV energy may be regarded as 
the first two members of the Regge family with 7= 1/2, 
even parity, and even / parity. It must be observed 
that without the notion of J parity it would not have 
been possible to explain the absence of an 7= 1/2, P\ wN 
resonance. Further, both these objects have to lie on 
the same Regge trajectory; otherwise we would expect 
to find another particle with nucleon quantum numbers 
and mass occurring where this Regge trajectory crossed 
J= 1/2. We can get an idea of the average slope of this 
Regge trajectory in terms of the observed masses of N 
and F$TTN resonance. This turns out to be da/dW 
«(370 MeV)"1. 

(2) The D}TN resonance with 7=1/2 at 1510 MeV 
has to be regarded as the first member of the Regge 
family with 7= 1/2, odd parity, and odd J parity. An 
observation of a second member of this family depends 
on whether this Regge trajectory ever crosses / = 1/2. 
On the basis of the above estimate of slope, we might 
expect it to happen around 2250 MeV, if one were 
allowed such an extrapolation. More likely, however, is 
that this is the only observable member of the family. 

(3) The 3, 3 resonance (i.e., P$ irN resonance with 
7=3/2 at mass 1238 MeV) has to be regarded as the 
first member of the family with 7=3/2, even parity, 
and odd J parity. Using our previous estimate of slope, 
one would expect this trajectory to exhibit its second 
member F7/2WN resonance with 7=3/2 around 1900 
MeV, where one has observed a bump in 7=3/2 state. 
The quantum numbers of the bump, however, are not 
yet certain. 

IV. HIGH-ENERGY BACKWARD *ciV SCATTERING 

The results obtained in the last two sections about 
the /-plane analyticity in the wN scattering (i.e., the s 
channel) apply equally to the u channel, as this is also 
a wN scattering channel. As the Regge poles in the u 
channel control the high-energy backward irN scatter­
ing, we are now in a position to give expressions for the 
TN backward-scattering angular distribution expected 
in the Regge picture. 

We have 

da 

l r (w2-l)2n 
| / l ( + ) T / ! H - [ / 2 ( + ) T / 2 H ] p U 

k2L s J 

X R e E / i ^ T / i H ^ t + J ^ H ] , (4.1) 
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Using crossing symmetry, we have 

dcr 

dQ 
>*±p) 

- | / l<+>C±/l^>C-[ /2 ( + ) C±/ 2<->C] | 2 

-if.- 1 Ret/i '+ 'y:/!" ']* 

X[/2
( + ) '±/2

(- , c], (4-2) 
since 

/ l , 2 ( + ) O ( ^ , 0 ± / l . 2 ( - ) f l ( ^ , 0 
=/lf2<+> (^,<)=F/ii2<-> (*,«,*). (4.3) 

This simply expresses the fact that w+p scattering in the 
direct channel looks like trp scattering in the u channel 
and vice versa. The superscript c refers to the ampli­
tudes in the crossed u channel with u as energy square. 

As the detailed expressions are long, let us illustrate 
how to work out the contribution of the different 
Regge poles to fii+)c(u,syt) and to f2

(+)c(u,s,t) by taking 
nucleon Regge poles as an example. 

Now we have 

and 

where superscripts §, f refer to the value of total iso-
spin. As the nucleon Regge trajectory has 7 = J, it 
would not contribute to J = | amplitudes and we get 

and 

where 

bN(Wu)= lim {laN(Wu)-jytj+i.j«
JM(Wu))t 

J-*ctN(Wu) 

where the subscript N stands for nucleon Regge 
contribution. 

The physical nucleon pole appears in the amplitude 
hJ+$,j+$Jie)(Wu) at J=\ and Wu=?n in the u channel, 
where u= Wu

2 and Wu is the cm. energy in the u chan­
nel. If we denote this Regge trajectory by J=OLN(W*)J 
the amplitude hj-.i,j-/ie)(Wu) will have a trajectory 
given by J—OLN(—Wu). Using the Sommerf eld-Watson 
transform for fh / 2 in the u channel, obtained by re­
placing W and z by Wu and zc (the energy and cosine 
of the angle of scattering in the u channel) in expression 
(2.14) and using the symmetry relation (3.5), we find 
that the contribution of the nucleon Regge pole to 
/ i ( c ) , /2(c> is given by 

[ / l ,2 (* ) C(*W)> 

{Eu-m){2k^Y^w-^bN{Wu) 

32WuCQ$[waN{Wu)~] 

(Eu+m) (2ku
2)aN^w^^bN(- Wu) 

32WucoslTaN(--Wu)l 

Aku
2=u-2m2-2+(m2-l)2/u) 

Eu=(Wu
2+m2-l)/2Wu> 

and 
Zc=-[s-m*--\+2Eu{Wu--Eu)y2ku\ (4.4) 

By substituting Eq. (4.4) together with similar 
contributions from other Regge poles in Eq. (4.2) we 
have the angular distribution in the backward irp 
scattering. 

Now the backward direction in the ^-channel wN 
scattering is given by 

u-(tn2-iy/s=0. 

Thus, at very high energies, the backward cone has the 
u values, which are negative; i.e., Wu is pure imaginary. 
If axiWu) and bN(Wu) are real analytic functions 
with cuts on the real axis only, then aN(—Wu) and 
&i\r(— Wu) would be complex conjugates of aN(Wu) 
and bN(Wu), respectively, and there would be inter­
ference terms between the trajectories J=aN(Wu) and 
J=OLN(— Wu), which would lead to oscillations in the 
angular distribution. 

V. REGGE POLES IN THE ot+* -»N+N CHANNEL 

We now come to a discussion of the /-plane analy-
ticity in the w+w —» N+N channel; i.e., the t channel. 
The Regge poles in this channel control the high-
energy forward elastic TTN scattering. 

The partial-wave decomposition in this channel is 
given by7 

8TT 
AM(s,u,t) = —i:(J+h)(pqy 

P2 

r m cos03 
X PS(cos03)f-

(±)J(t) 
L [ / ( / + l ) ] l / 2 

-Pj(cosdz)f+^(t)\ (5.1) 

CH-i) 
and 

5'±» (*,«,<) = 8 x L 

X (pgy-ip/icosd^fJ^it), (5.2) 
where 

/=4(^2+m2) = 4(^2+l), 
cos03= (s+p2+q*)/(2pq) = zh 

/ ±
( ± ) j r = s a m e definition as of Frazer and Fulco, 

and the sums over J run through 7 = 0 , 2, 4, * • • for A(+) 

and £<+>, that is 1=0; and 7 = 1 , 3, • • • for A<~> and 
£<-> that is 7 = 1 . 

7 W. Frazer and J. Fulco, Phys. Rev. 117, 1603 (1960). 
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In what follows we do not consider the analytic con­
tinuation of f±(±)J into the complex / plane, but rather 
the continuation of f+i±)J and ( f )_ ( ± ) / denned by 

(f)- ( ± ) / = . /+* 
ZJ{j+i)J» 

(±)j (5.3) 

as these are the quantities that we always encounter. 
This gets rid of the fixed branch points in / at / = 0 , — 1. 
We have for physical / values 

/ + <±> /= 
i i 4 /±> 

(f)- (±)J= 

8*1 (pqY (2J+l)(pqY-i 

X [ ( 7 + l ) S / + 1
( ± ) + / 5 / _ 1 < ± ) ] | . (5.4) 

16*(pq) J-I 

Using these expressions to project out these partial 
waves, we obtain, after certain simplifications, 

/+<±>'(fl=-
P* [1±(~)J] 

8TT2 (pq)J+1 
\f* 

s'+f+q2 

and 

X 

x|"i4. ( ± )(*V) : -B 

1 [1±(-)J] 

.(±)(*V)] 
If 

/s'+p*+q\ 
XQj\-nr> 

(5.5) 

167T2 ( />9) J rfj'J?.<±>(jV) 

M-^r)-M-is-)] 
We have used the crossing symmetry (Bose statistics 

for the pions) also in writing these expressions. Looking 
at these expressions, one again sees that, apart from the 
factor [ 1 ± ( - ) ' ] , the quantities / + ( ± ) J and (f)_ (±) j r 

define analytic continuations that are suitable for 
making Sommerfeld-Watson transforms. Thus we again 
define the even and odd /-parity continuations by re­
placing (—) / by + 1 for even / parity and by — 1 for 
odd /-pari ty continuations. This makes the odd J-
parity continuations for 1=0 and the even /-pari ty 
continuations for 1=1 identically vanish. This is a 
particular instance in which a symmetry property 
(here, Bose statistics for pions) tells us that only one 
/ parity is physical. Since only one of the /-pari ty 
continuations is nonzero, we shall use the same nota­
tion as f+(±)J and ( f )_ ( ± ) / to denote the nonvanishing 
one. 

The analytic properties in / of the /-plane analytic 
continuations / + ( ± ) / and (f)- ( ± ) j r are precisely the 

same as that of the physical partial waves. They are 
thus real analytic functions in the / plane with a right-
hand cut 4 < / < ° ° , and a left-hand cut — °o <t 
<4(1 — l/4m2), on the real axis. 

Since unitarity couples both / +
+ / and ( f )_ + / to a 

number of common channels like the 1=0, ww scattering 
channel, they will share the same Regge poles together 
with the 1=0, ww scattering amplitude. Similarly for 
( /+ ) - ' and ( f t . - ' . 

VI. HIGH-ENERGY FORWARD ELASTIC 
SCATTERING 

High-energy forward elastic scattering is dominated 
by the Regge poles in the crossed channel w+w-» 
iV+iV; i.e., the t channel, which we analyzed in the 
last section from the Regge point of view. 

We have for differential and total cross sections, 

da/dQ= | / i + / 2 | 2 + ( ^ 2 ) Re/i*/2 , 
and 

with 

T t o t a l = 

4KW 

w(co2- l ) i 
Im(/i+/2)<-o, 

(6.1) 

;6.2) 

OJ= (s—tn2—1)/(2m) = the lab energy of the pion. 

Here one has to substitute proper isospin combinations 
for / i and /2 . Thus 

and 
/«=/< (+ )±/,- (-> for wTp-*wTp, 

fi= - v 5 / / - ) for w~p - * w°n. (6.3) 

Re-expressing Eqs. (6.1) and (6.2) in terms of ampli­
tudes A' and B, where 

o)+t/(4m) 
A'=A+ B, 

l - / / ( 4 w 2 ) 
(6.4) 

we obtain 

da / *«. \2| 

dQ WWV LA 4mV 

/ / (m+w)2 \ -i 

and 
4 # A l-t/(4m2)j 

T t o t a l — _ ImA'(s.J=0). (6.6) 
(fl>»-l)* 

Now we have from Eqs. (5.1), (5.2), and (5.3), 

8x 
4'<±> (* , / )= Y,(pqy(J+hW±)J(t)PAcos03), 

f ' 
and 

B ( ± )(*,0 = 8» Z ( ^ ) / _ 1 ( 0 - ( ± ) / i ' / ( c o B » » ) . (6.7) 
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On the hypothesis that large s (i.e., cos03) behavior 
is dominated by the Regge poles in the t channel, we 
have 

*-*" p2 \mJ 

X 
"Pa*w (—a«)±P«±(«) (zty 

and 

B(±) __> + 2 i r * — 

X 

pqyMt)-i 

sin^a*^) 

i_±(0 

(6.8) 

- P « * ( . ) ' ( - S | ) T P « * ( i ) ' ( 8 t ) 

sin7ro:±(0 } 
where a+(t) and or(t) are Regge poles that have maxi­
mum real parts for the isospin zero, T+T —» N+N 
channel, and for the isospin one, TT+T —> N+N channel, 
respectively, and where 

M=(0 = lim { ^ / + ± ^ ) ( / ) [ / - a ± 0 ) ] } , 

and (6.80 
i - ± ( 0 = lim {w / - 1 ( f ) - ± ( J ) (0 [ / -« ± W]}. 

J->a±(f) 

In writing these expressions we have used the results 
concerning the / parity and sharing of Regge poles by 
different amplitudes, which were established in the last 
section. 

These expressions (6.8) could be further simplified to 

— 1 
2 \2m) 

and (6.9) 

*-*» \lm) L smica±(t) J 

where C+
±(^) is linearly related to b+±(t), and Cj^it) 

to ^_±(/). Substituting these behaviors (6.9) into our 
expressions for total cross sections, we get 

( s v a+(0)-l 

— J 
2ml 

and (6.10) 
^ v a~(0)-l 

( X totaI(7 r-^)_ ( 7 total(7 r+^)_> C + - ( 0 ) [ — ^ 
*-** \2ml 

Now if the constancy and equality of the ir+p and 
w~p cross section is to be achieved in this picture, then 
we must have 

a+(0) = l, 
and (6.11) 

or (0)<1. 

Thus these must be a trajectory having zero baryon 
number, even G parity, even / parity, and zero isospin; 
i.e., the trajectory has the quantum numbers of the 
vacuum that must pass through 1 at 2=0. This is the 
Pomeranchuk trajectory. There cannot be any tra­
jectory that passes through a point J> 1 at 2=0 other­
wise we would have a cross section increasing as a 
power of energy which is certainly not allowed by the 
Mandelstam representation. Also, for isospin one we 
expect the p Regge trajectory to be same as or(t). Now 
Re ar(t) = 1 at t^SOm*2; hence, at t—0 we would auto­
matically have or(0) < 1. 

Thus, at high energies, the ir+p and irp scattering 
will both be dominated by the Pomeranchuk-Regge 
pole and we will have 

da 1 / ^ \2t«+(»-i] 
-(v±p -» v^p) -* ( — J 

it •-00 \(m\2mJ 

| C++(t) | * (| C+H0 | 2 + | *Hf)cJr(t) | 2) 
4w2 J 

X 
l^-e-iTa+(t) 

sin7ra+(0 
. (6.12) 

However, for the charge exchange T~p—*w0n, the 
Pomeranchuk-Regge pole cannot contribute because 
there would have to be a charge exchange in the crossed 
channel; this cannot happen because the Pomeranchuk 
trajectory has zero isospin. Charge exchange is a pure 
7=1 process when looked at in the / channel. Thus, this 
process is dominated by the p Regge pole, and we have 

da \ / s \2E«-(0-i] 
—(irp -»7T%) ~» —I — ) 
dt »-K08ir\2w/ 

XJ|C+-(0|2-—(k+-(/)|2+|a-(0c_-(0|2)j 
I Am2 J 

2 

. (6.13) X 
l _ e - * i r a - ( 0 

simra~(t) 

By using these expressions (6.12) and (6.13), it 
should be experimentally possible to determine the 
Pomeranchuk and p trajectories for negative values of /. 
A significant feature of the Regge-pole hypothesis is the 
logarithmic shrinkage of the width of the diffraction 
peak with energy. 
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APPENDIX. THE RANGE OF THE EXCHANGE 
POTENTIAL 

There has been some uncertainty as to what quantity 
should properly be called the range of the exchange 
potential in the case of the scattering of two unequal 
mass particles, such as wN scattering. The discussion in 
Sec. II clarifies this situation. 

It will be seen from expressions (2.12) and (2.13) 
that the absorptive parts in the t and u channels having 

I. INTRODUCTION 

IT has been observed by Liiders1 that density fluctua­
tions in the BCS model of a superconductor violate 

a standard result of statistical mechanics (Sec. 2, Sec. 3). 
The difficulty is analyzed here. It is found to be resolved, 
at least for zero temperature, by those same improve­
ments of the theory which lead to a gauge-invariant 
Meissner effect (Sec. 4, Sec. 5). A new derivation of the 
standard theorem is given (Sec. 6). 

n. THEOREM 

Consider an infinite homogeneous system in thermal 
equilibrium, specified by temperature T and chemical 
potential M- The two-particle correlation function is 
defined by 

G(x-y) = (p(x)p(y))-(p(x))<P(y)), (1) 

where p(x) is density at position x, and brackets ( ) 
denote thermal averaging. The standard result2 is that 

C dP 
dxG(x) = kT—, (2) 

J dn 
where p is mean density. An equivalent statement is 
that in a large subvolume & the fluctuation of particle 

* Permanent address: CERN Geneva. 
1 G. Liiders (unpublished). 
2 See for example L. D. Landau and E. M. Lifshitz, Statistical 

Physics (Pergamon Press, London, 1958), p. 365. 

the same value of the integration variable %' super­
impose each other. Now xf—t for / absorptive parts 
and x'=u— (m2—l)2/s for u absorptive parts. Hence 
the range of the exchange force arising from the ex­
change of mass \/u is [u— (m2— l)2/s]~1/2 in the sense 
that (t)~* is the range of the direct force arising from 
an exchange of mass \/t in the / channel. Unlike the 
direct force, the range of the exchange force is energy 
dependent and gets smaller as the energy gets larger. 
In particular, the exchange of a single nucleon gives 
rise at low energies to a force of range of approximately 
(2m)~1/2 and approaches the naively expected range 
(m)~l only at very high energy. 

number 

N'= [ dxP(x) 

is given by 

(N'2)- (N')2= tfkT(dp/dn), (3) 

or with a different form of the right-hand side 

{N'*)-{N'Y=ttpkT{dp/dp), (4) 
where p is pressure. 

The usual argument is that for large enough Q' one 
can ignore interaction across the dividing surface with 
the remainder of the system. The latter is treated merely 
as a reservoir of particles. The subsystem in 0' is then 
represented, to some unspecified degree of accuracy, by 
a grand canonical ensemble. Equation (3) is readily 
derived, and (2) follows from it. 

The theorem has been stated for an infinite system. 
In formal discussion one considers first a large but finite 
system, of volume 0. We then use the conventional 
periodic boundary conditions, so that the quantity on 
the right-hand side of (1) remains a function only of 
(x—y). It is essential that the limit fi—» oo is taken 
before the integration in (2) is performed. It is easily 
seen that the quantity 

lim / dxG(x) 

is ensemble dependent. In fact, it is proportional to the 
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